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Abstract

A single captured image of a real-world scene is usually insufficient to reveal all the details due to

under- or over-exposed regions. To solve this problem, images of the same scene can be first captured

under different exposure settings and then combined into a single image using image fusion techniques.

In this paper, we propose a novel probabilistic model-based fusion technique for multi-exposure images.

Unlike previous multi-exposure fusion methods, our method aims to achieve an optimal balance between

two quality measures, i.e., local contrast and color consistency, while combining the scene details

revealed under different exposures. A generalized random walks framework is proposed to calculate

a globally optimal solution subject to the two quality measures by formulating the fusion problem as

probability estimation. Experiments demonstrate that our algorithm generates high-quality images at low

computational cost. Comparisons with a number of other techniques show that our method generates

better results in most cases.
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Fig. 1. Comparison between multi-exposure fusion and the HDR reconstruction and tone mapping workflow. (The Garage

image sequence courtesy of Shree Nayar.)

I. INTRODUCTION

A natural scene often has a high dynamic range (HDR) that exceeds the capture range of common

digital cameras. Therefore, a single digital photo is often insufficient to provide all the details in a scene

due to under- or over-exposed regions. On the other hand, given an HDR image, current displays are

only capable of handling a very limited dynamic range. In the last decade, researchers have explored

various directions to resolve the contradiction between the HDR nature of real-world scenes and the low

dynamic range (LDR) limitation of current image acquisition and display technologies. Although cameras

with spatially varying pixel exposures [1], cameras that automatically adjust exposure for different parts

of a scene [2], [3], and displays that directly display HDR images [4] have been developed by previous

researchers, their technologies are only at a prototyping stage and unavailable to ordinary users.

Instead of employing specialized image sensors, an HDR image can be reconstructed digitally using

HDR reconstruction (HDR-R) techniques from a set of images of the same scene taken by a conventional

LDR camera [5] or a panoramic camera [6] under different exposure settings. These HDR images

usually have higher fidelity than LDR images, which benefits many applications, such as physically-based

rendering and remote sensing [7]. As for viewing on ordinary displays, an HDR image is compressed

into an LDR image using tone mapping (TM) methods [8], [9]. This two-phase workflow, HDR-R+TM

(HDR-R and TM), has several advantages: no specialized hardware is required; various operations can

be performed on the HDR images, such as virtual exposure; and user interactions are allowed in the TM

phase to generate a tone-mapped image with desired appearance. However, this workflow is usually not

as efficient as image fusion (IF, e.g., [10], [11]), which directly combines the captured multi-exposure

images into a single LDR image without involving HDR-R, as shown in Figure 1. Another advantage

of IF is that IF does not need the calibration of the camera response function (CRF), which is required

in HDR-R if the CRF is not linear. IF is preferred for quickly generating a well-exposed image from an
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input set of multi-exposure images, especially when the number of input images is small and speed is

crucial.

Since its introduction in the 1980s, IF has been employed in various applications, such as multi-sensor

fusion [12], [13] (combining information from multi-modality sensors), multi-focus fusion [14], [15]

(extending depth-of-field from multi-focus images), and multi-exposure fusion [11], [16] (merging details

of the same scene revealed under different exposures). Although some general fusion approaches [17],

[18] have been proposed by previous researchers, they are not optimized for individual applications and

have only been applied to gray level images. In this paper, we only focus on multi-exposure fusion

and propose a novel fusion algorithm that is both efficient and effective. This direct fusion of multi-

exposure images removes the need for generating an intermediate HDR image. A fused image contains

all the information present in different images and is ready for viewing on conventional displays. Unlike

previous multi-exposure fusion methods [10], [11], our algorithm is based on a probabilistic model and

global optimization taking neighborhood information into account. A generalized random walks (GRW)

framework is proposed to calculate an optimal set of probabilities subject to two quality measures:

local contrast and color consistency. The local contrast measure preserves details; the color consistency

measure, which is not considered by previous methods, includes both consistency in a neighborhood

and consistency with the natural scene. Although used for multi-exposure fusion in this paper, this

proposed GRW provides a general framework for solving problems that can be formulated as a labeling

problem [19], i.e., estimating the probability of a site (e.g., a pixel) being assigned a label based on

known information. The proposed fusion algorithm has low computational complexity and produces a

final fused LDR image with fine details and an optimal balance between the two quality measures. By

defining problem-specific quality measures, the proposed algorithm may also be applied to other fusion

problems.

The rest of the paper is organized as follows. Section II reviews previous methods. Differences between

our algorithm, previous IF methods, and methods used in the HDR-R+TM workflow, are also discussed.

Section III explains our algorithm in detail. Section IV discusses experimental results and performance,

along with comparisons with other IF methods and the HDR-R+TM workflow. Finally, Section V gives

the conclusions and future work.
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II. RELATED WORK

A. Multi-Exposure Image Fusion

Image fusion methods combine information in different images into a single composite image. Here we

only discuss those IF methods that are most relevant to our algorithm. Please refer to [20] for an excellent

survey on IF methods in different applications. For multi-exposure images, IF methods directly work on

the input LDR images and focus on enhancing dynamic range while preserving details. Goshtasby [10]

partitions the input images into uniform blocks and tries to maximize the information in each block based

on an entropy measure. However, the approach may generate artifacts on object boundaries if the block

is not sufficiently small. Instead of dividing images into blocks, Cheng and Basu [21] combine images in

a column-by-column fashion. This algorithm maximizes the contrast within a column by selecting pixels

from different images. However, since no neighborhood information is considered, it cannot preserve

color consistency and artifacts may occur on object boundaries. Cho and Hong [22] focus on substituting

the under- or over-exposed regions in one image, which are determined by a saturation mask, with the

well-exposed regions in another image. Region boundaries are blended by minimizing an energy function

defined in the gradient domain. Although this algorithm works better on object boundaries, it is only

applicable to two images. Our algorithm works at the pixel level and applies a global optimization taking

neighborhood information into account, which avoids the boundary artifacts.

Image fusion can also be interpreted as an analogy to alpha blending. Raman and Chaudhuri [23]

generate the fused image by solving an unconstrained optimization problem. The weight function for

each pixel is modeled based on local contrast/variance in a way that the fused image tends to have

uniform illumination or contrast. Raman and Chaudhuri [24] generate mattes for each pixel in an image

using the difference between the original pixel value and the pixel value after bilateral filtering. This

measure strengthens weak edges, but may not be sufficient to enhance the overall contrast. Our algorithm

defines two quality measures and finds the optimal balance between them, i.e., enhancing local contrast

while imposing color consistency.

Multi-resolution analysis based fusion has demonstrated good performance in enhancing main image

features. Bogoni and Hansen [16] propose a pyramid-based pattern-selective fusion technique. Laplacian

and Gaussian pyramids are constructed for the luminance and chrominance components, respectively.

However, the color scheme of the fused image may be very close to the average image because pixels

with saturation closest to the average saturation are selected for blending. Mertens et al. [11] construct

Laplacian pyramids for the input images and Gaussian pyramids for the weight maps. A weight for a pixel
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Fig. 2. Processing procedure of the proposed fusion algorithm. (The Window image sequence courtesy of Shree Nayar.)

is determined by three quality measures: local contrast, saturation, and well-exposedness. The Laplacian

and Gaussian pyramids are blended at each level, and then collapsed to form the final image. However,

with only local calculation involved and no measure to preserve color consistency, the fusion results may

be unnatural. Our algorithm also uses local contrast as one quality measure, but another quality measure

that we consider is color consistency, which is not employed by [11]. Moreover, our algorithm does not

use pyramid decomposition but solves a linear system defined at the pixel level.

B. HDR Reconstruction and Tone Mapping

Although the HDR-R+TM workflow is usually used in different scenarios than IF methods, we still give

a brief discussion on those HDR-R and TM methods sharing some similar features to our IF algorithm,

because the original input and the final output of this workflow is the same as IF. Given an input LDR

sequence and exposure times associated with each image in the sequence, HDR-R techniques [5] first

recover the CRF, which is a mapping from the exposure at each pixel location to the pixel’s digital

LDR value and then use the CRF to reconstruct an HDR image via a weighting function. Debevec and

Malik [5] recover the CRF by minimizing a quadratic objective function defined on exposures, pixels’

LDR values, and exposure times. Then, a hat-shaped weighting function is used to reconstruct the HDR

image. Granados et al. [25] assume the CRF is linear and focus on the development of an optimal

weighting function using a compound-Gaussian noise model. Our IF algorithm also solves a quadratic

objective function, but the function is defined on local features and the solution leads to probability maps.

Given an HDR image, tone mapping methods [26] aim to reduce its dynamic range while preserving

details. TM usually works solely in the luminance channel. Global TM methods [27], [28], which apply

spatially invariant mapping of luminance values, usually have high speed, while local TM methods [8],

[9], [29], [30], which apply spatially varying mapping, usually produce images with better qualities
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especially when strong local contrast is present [9], [30]. Reinhard et al. [9] uses a multiscale local

contrast measure to compress the luminance values. Li et al. [29] decompose the luminance channel of

the input HDR image into multiscale subbands and apply local gain control to the subbands. Shan et

al. [30] define a linear system for each overlapping window in the HDR image using local contrast, and

the solution of each linear system are two coefficients that map luminance values from HDR to LDR.

Although our IF algorithm also uses local contrast to define a linear system, the local contrast in our

algorithm is calculated in a different manner and another quality measure (i.e., color consistency) is also

considered. Furthermore, our IF algorithm defines a linear system on pixels from all the original LDR

images, and the solution is a set of probabilities that determine the contributions from each pixel of

each original LDR image to its corresponding pixel in the fused image. Krawczyk et al. [8] segment an

HDR image into frameworks with consistent luminance and compute the belongingness of each pixel

to each framework using the framework’s centroid, which results in a set of probability maps. Our IF

algorithm also generates probability maps, but directly from the original LDR sequence with no HDR or

segmentation involved. One typical problem with some local TM methods is halo artifacts introduced due

to contrast reversals [26]. Our IF algorithm balances between contrast and consistency in a neighborhood,

which can prevent contrast reversals. Another problem with some TM methods is that color artifacts

like oversaturation may be introduced into the results, because operations are usually performed in the

luminance channel without involving chrominance [26]. This problem does not apply to our IF algorithm,

because every color channel is treated equally.

III. PROBABILISTIC FUSION

Unlike most previous multi-exposure fusion methods, we consider image fusion as a probabilistic

composition process, as illustrated in Figure 21. The initial probability that a pixel in the fused image

belongs to each input image is estimated based on local features. Taking neighborhood information into

account, the final probabilities are obtained by global optimization using the proposed generalized random

walks. These probability maps serve as weights in the linear fusion process to produce the fused image.

In a probability map, the brighter a pixel is, the higher the probability. These processes are explained in

detail below.

1The initial probability maps are normalized at each pixel.
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A. Problem Formulation

The fusion of a set of multi-exposure images can be formulated as a probabilistic composition process.

Let D = {I1, . . . IK} denote the set of input images and L = {l1, . . . , lK} the set of labels, where a

label lk ∈ L is associated with the kth input image Ik ∈ D. Ik’s are assumed to be already registered

and have the same size with N pixels each. Normally, K � N . Let us define a set X of variables such

that an xi ∈ X is associated with the ith pixel pi in the fused image I∗ and takes a value from L. Then,

each pixel in the fused image I∗ can be represented as:

pi =

K∑
k=1

P k(xi)p
k
i , (1)

where pki denotes the ith pixel in Ik and P k(xi) , P (xi = lk|D) the probability of pixel pi being assigned

label lk given D with
∑

k P
k(xi) = 1. This probabilistic formulation converts the fusion problem to the

calculation of marginal probabilities given the input images subject to some quality measures and helps to

achieve an optimal balance between different quality measures. If every pixel is given equal probability,

i.e., P k(xi) = 1
K , ∀i, k, I∗ is simply the average of Ik’s. Although it is also possible to only combine

pixels with highest probabilities instead of using Equation (1), artifacts may appear at locations with

significant brightness changes between different input images.

If P k(xi)’s are simply viewed and calculated as local weights followed by applying some relatively

simple smoothing filters, such as Gaussian filter and bilateral filter, either artifacts (like halos) may appear

at object boundaries or it is difficult to determine the termination criteria of the filtering, therefore the

results are usually unsatisfactory [11]. An alternative is to use multi-resolution fusion techniques [11],

[16], where the weights are blended in each level to produce more satisfactory results. However, the

weights in each level are still determined locally, which may not be optimal in a large neighborhood.

In contrast to multi-resolution techniques, we propose an efficient single-resolution fusion technique by

formulating P k(xi)’s in Equation (1) as probabilities in GRW. A set of optimal P k(xi)’s that balances

the influence of different quality measures is computed from global optimization in GRW. Experiments

(Section IV) show that the results of the proposed probabilistic fusion technique are comparable to the

results of multi-resolution techniques and the results of the HDR-R+TM workflow.

B. Generalized Random Walks

In this section, we propose a generalized random walks (GRW) framework based on the random walks

(RW) algorithm [31], [32] and the relationship between RW and electrical networks [33].
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Fig. 3. The graph used in GRW. The yellow nodes are scene nodes and the orange nodes are label nodes.

1) Image Representation: As shown in Figure 3, the variable set X and the label set L are represented

in a weighted undirected graph similar to [31]. Each variable is associated with a pixel location, and each

label is associated with an input image in our case. The graph G = (V, E) is constructed as V = L ∪ X

and E = V ×V including edges both within X and between X and L. The yellow nodes are scene nodes

and the orange nodes are label nodes. For a scene node x ∈ X , edges EX are drawn between it and each

of its immediate neighbors in X (4-connectivity is assumed in our case). In addition, edges EL are drawn

between a scene node and each label node. wij , w(xi, xj) is a function defined on EX that models the

compatibility/similarity between nodes xi and xj , and yik , y(xi, lk) is a function defined on EL that

models the compatibility between xi and lk.

2) Dirichlet Problem: Let V be arranged in a way that the first K nodes are label nodes, i.e.,

{v1, . . . , vK} = L, and the rest N nodes are scene nodes, i.e., {vK+1, . . . , vK+N} = X . With two

positive coefficients γ1 and γ2 introduced to balance the weights between y(·, ·) and w(·, ·), we can

define a node compatibility function c(·, ·) on E with the following form:

cij , c(vi, vj) =

 γ1yi−K,j , (vi, vj) ∈ EL ∧ vj ∈ L;

γ2wi−K,j−K , (vi, vj) ∈ EX .
(2)

Because the graph is undirected, we have cij = cji. Let u(vi) denote the potential associated with vi.

Based on the relationship between RW and electrical networks [33], the total energy of the system given

in Figure 3 is:

E =
1

2

∑
(vi,vj)∈E

cij(u(vi)− u(vj))2. (3)

Our goal is to find a function u(·) defined on X that minimizes this quadratic energy with boundary

values u(·) defined on L. If u(·) satisfies O2u = 0, then it is called harmonic, and the harmonic function

is guaranteed to minimize such quadratic energy E [32]. The problem of finding this harmonic function

is called the Dirichlet problem.
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The harmonic function u(·) can be computed efficiently using matrix operations. Similar to [32], a

Laplacian matrix L can be constructed following Equation (4); however, unlike [32], L here contains

both the label nodes and the scene nodes and becomes a (K +N)× (K +N) matrix:

Lij =


di, i = j;

−cij , (vi, vj) ∈ E ;

0, otherwise.

(4)

where di =
∑

vj∈Ni
cij is the degree of the node vi defined on its immediate neighborhood Ni. Then,

Equation (3) can be rewritten in matrix form as:

E =

 uL

uX

T

L

 uL

uX


=

 uL

uX

T  LL B

BT LX

 uL

uX

 (5)

where uL = (u(l1), . . . , u(lK))T and uX = (u(x1), . . . , u(xN ))
T ; LL is the upper left K×K submatrix

of L that encodes the interactions within L; LX is the lower right N × N submatrix that encodes the

interactions within X ; and B is the upper right K ×N submatrix that encodes the interactions between

L and X . Hence, the minimum energy solution can be obtained by setting OE = 0 with respect to uX ,

i.e., solving the following equation:

LXuX = −BTuL. (6)

In some cases, part of X may be already labeled. These pre-labeled nodes can also be represented

naturally in the current framework without altering the structure of the graph. Suppose xi is one of the

pre-labeled nodes and is assigned label lk. Then, we can simply assign a sufficiently large value to yik

and solve the same Equation (6) for the unlabeled scene nodes.

3) Probability Calculation: The probability P k(xi) that a scene node xi is assigned the kth label lk

given all the observed data D can be considered as the probability that a random walker starting at a

scene node xi ∈ X first reaches the label node lk ∈ L on the graph G. Thus, P k(xi) can be computed

for each pair of (xi, lk) by solving K Dirichlet problems in K iterations. Note that the probabilities here

are used in the context of random walks [31]–[33], which is different from the log-probabilities used in

Markov random field energy minimization [19].
γ1yik
di

can be considered as the initial probability that the scene node xi is assigned label lk given data

Di associated with xi and data Dk associated with lk, i.e., the probability that a random walker transits
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from xi to lk in a single move:
γ1yik
di

= P (xi = lk|Di,Dk). (7)

γ2wij

di
can be considered as the probability that the scene nodes xi and xj are assigned the same label

given Di and Dj , i.e., the probability that a random walker transits from xi to xj in a single move:

γ2wij
di

= P (xi = xj |Di,Dj). (8)

When constructing yik’s or wij’s, it is assumed that the probability that xi takes a different label from

lk or xj is zero. This assumption ensures the smoothness of the labeling. yik’s and wij’s are initialized

at the beginning of the algorithm and remain the same in each iteration.

Let uk(vi) be the potential associated with node vi in the kth iteration, which we define to be

proportional to P k(vi):

uk(vi) = γ3P
k(vi), (9)

where γ3 is a positive constant. Since P k : V → [0, 1], uk : V → [0, γ3]. uk(·) is a binary function on

L: uk(l) = γ3, when l = lk; uk(l) = 0, otherwise. For any xi ∈ X ,
∑K

k=1 u
k(xi) = γ3. Once yik’s and

wij’s are defined, the probabilities P k(xi)’s can then be determined from Equations (6) and (9).

The RW algorithm [32] requires some variables to be instantiated, i.e., some scene nodes to be pre-

labeled. This requirement is relaxed in GRW. The RW algorithm with prior models (RWPM) [31] is

proposed for image segmentation and derives a similar linear system to Equation (6) from a Bayesian

point of view. A small inaccuracy in [31] is that a weighting parameter γ is missing from the right-hand

side in their Equation (11). When setting γ2 = γ3 in GRW, we can get a linear system in the same format

as derived in [31] with the missing parameter γ added. The nodewise priors in [31], which correspond to

our compatibility function y(·, ·), are required to be defined following a probability expression. Although

it is mentioned in [31] that the solution of RWPM is equivalent to that of the original RW [32] on

an augmented graph considering the label nodes as the extra pre-labeled nodes, the requirement on the

format of the nodewise priors limits the choice of y(·, ·). This requirement is relaxed in GRW, where

we formulate the problem from the original RW point of view [33], where probabilities are considered

as the transition probabilities of a random walker moving between nodes. The edge weighting function

in [31], which corresponds to our compatibility function w(·, ·), serves as a regularization term. In GRW,

y(·, ·) and w(·, ·) are not probability quantities; instead, they represent compatibility/similarity and are

used to define the transition probabilities. In GRW, we have relaxed the extra requirements in [31], [32]

and provided a more flexible framework, where the compatibility functions (and potential function) may

April 19, 2011 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXX 2011 11

be defined in any form according to the need of a particular problem. For the fusion problem, the form

of the compatibility functions is presented in Section III-C. Although in this paper GRW is proposed to

solve the multi-exposure fusion problem, it can actually be applied to many different problems that can

be formulated as estimating the probability of a site (e.g., a pixel) being assigned a label given known

information.

C. Compatibility Functions

The compatibility functions y(·, ·) and w(·, ·) are defined to represent respectively the two quality

measures used in the proposed fusion algorithm, i.e., local contrast and color consistency. Since image

contrast is usually related to variations in image luminance [26], the local contrast measure should be

biased towards pixels from the images that provide more local variations in luminance. Let gki denote the

second-order partial derivative computed in the luminance channel at the ith pixel in image Ik, which is

a indicator of local contrast. The higher the magnitude of gki (denoted by |gki |) is, the more variations

occur near the pixel pki , which may indicate more local contrast. In [11], a Laplacian filter is used to

calculate the variations. Here both Laplacian filter and central difference in a 3× 3 neighborhood were

tested. With all other settings the same, central difference produces slightly better visual quality in the

fused images. Therefore, central difference is used to approximate the second-order derivative. However,

if the frequency (i.e., number of occurrences) of a value |gki | in Ik is very low, the associated pixels

may be noise or belong to unimportant features. Therefore, unlike previous methods [11], [23], our

contrast measure is normalized by the frequencies of each |gki |. In addition, gki ’s are modified using a

sigmoid-shaped function to suppress the difference in high contrast regions. Because of the nonlinear

human perception of contrast [34], such a mapping scheme helps us avoid overemphasis on high local

variations. Hence, taking into account both the magnitude and the frequency of the contrast indicator gki ,

the compatibility between a pixel and a label is computed as:

yik = θik[erf(
|gki |
σy

)]K , (10)

where θik represents the frequency of the value |gki | in Ik; erf(·) is the Guassian error function, which

is monotonically increasing and sigmoid shaped; the exponent K is equal to the number of input images

and controls the shape of erf(·) by giving less emphasis on the difference in high contrast regions as the

number of input images increases; and σy is a weighting coefficient, which we take as the variance of

all gki ’s.
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Algorithm 1 Basic steps of the proposed fusion algorithm.
1: Construct function y(·, ·) from Equation (10)

2: Construct function w(·, ·) from Equation (11)

3: Construct function c(·, ·) from Equation (2)

4: Construct L from Equation (4)

5: for k = 1 to K do

6: Calculate uk(·) (P k(·)) for all xi ∈ X by solving Equation (6)

7: end for

8: Compute the fused image from Equation (1)

The other quality measure used in our algorithm is color consistency, which is not considered in

previous methods [10], [11]. Although Bogoni and Hansen [16] also suggested a color consistency

criterion by assuming that the hue component for all the input images is constant, this assumption is not

true if the images are not taken with close exposure times. In addition, they do not consider consistency

in a neighborhood. Our color consistency measure imposes not only color consistency in a neighborhood

but also consistency with the natural scene. If two adjacent pixels in most images have similar colors,

then it is very likely that they have similar colors in the fused image. Also, if the colors at the same pixel

location in different images under appropriate exposures (not under- or over-exposed) are similar, they

indicate the true color of the scene and the fused color should not deviate from these colors. Therefore,

the following equation is used to evaluate the similarity/compatibility between adjacent pixels in the input

image set using all three channels in the RGB color space:

wij =
∏
k

exp(−
‖pki − pkj ‖

σw
) ≈ exp(−

‖pi − pj‖
σw

), (11)

where pki and pkj are adjacent pixels in image Ik; exp(·) is the exponential function; ‖·‖ denotes Euclidean

distance; pi =
1
K

∑
k p

k
i denotes the average pixel; and σw and σw = σw/K are free parameters. Although

the two quality measures are defined locally, a global optimization using GRW is carried out to produce

a fused image that maximizes contrast and details, as well as imposing color consistency. Once y(·, ·)

and w(·, ·) are defined using Equations (10) and (11), the probabilities P k(xi)’s are calculated using

Equations (2) to (6). Here, we fix γ3/γ1 = 1 and only use the ratio γ = γ2/γ1 to determine the relative

weight between y(·, ·) and w(·, ·). The basic steps of our algorithm are summarized in Algorithm 1.
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(a) (b) (c) (d) (e)

Fig. 4. Comparison of our method with EF, EntropyF, and VC using the Chairs image sequence. The result of EF is comparable

to ours. The result of EntropyF suffers a little over-exposure. The result of VC shows serious halo artifacts on object boundaries.

(a) Input sequence (top) and final probability maps (bottom). (b) Proposed. (c) EF [11]. (d) EntropyF [10]. (e) VC [23]. (Input

sequence courtesy of Shree Nayar.)

D. Acceleration

To accelerate the computation as well as reduce memory usage, the final probability maps are computed

at a lower resolution of the Laplacian matrix and then interpolated back to the original resolution before

being used in Equation (1). The contrast indicator gki of each pixel is calculated at the original resolution.

Then, the images are divided into uniform blocks of size η × η. The average of gki ’s in a block is used

to calculate the compatibility yik between that block and the label lk. The compatibility between two

adjacent blocks is computed as wij of the average pixel in one block and the average pixel in the other

block.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Comparison with Other Image Fusion Methods and Some Tone Mapping Methods

Only three free parameters are used in our algorithm, and we take σw = 0.1, γ = 1.0, η = 4 in

all experiments unless otherwise mentioned. 12 LDR image sequences were used in the experiments.

Figure 4 shows the comparison of our IF algorithm with three other IF methods on the Chairs image

sequence. The input image sequence and final probability maps are given in Figure 4(a). Brighter pixels

in a probability map stand for higher probabilities. The result of entropy fusion (EntropyF) [10] is taken

from its project webpage2. The result of variational composition (VC) [23] is taken from its paper. The

results of exposure fusion (EF) [11] in all experiments are generated by the Matlab implementation

provided by its authors. Its default parameter setting is used in all experiments. The result of EF is

comparable to ours. The result of EntropyF suffers a little over-exposure. The result of VC shows serious

halo artifacts on object boundaries.

2http://www.cs.wright.edu/∼agoshtas/hdr.html.
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(a)

(b) (c) (d) (e) (f)

Fig. 5. Comparison of our algorithm with EF, PTR, SC and LW using the Belgium House image sequence. The intermediate

HDR image for PTR, SC and LW is generated by HDRShop. The results of EF and PTR suffers over-exposure in the window

regions. The results of SC and LW show some color distortion (looking pink). (a) Input image sequence (top) and final probability

maps (bottom). (b) Proposed. (c) EF [11]. (d) PTR [9]. (e) SC [29]. (f) LW [30]. (Input sequence courtesy of Dani Lischinski.)

(a)

(b) (c) (d) (e) (f)

Fig. 6. Comparison of our algorithm with EF, PTR, SC and LW using the House image sequence. The intermediate HDR

image for PTR, SC and LW is generated by HDRShop. EF introduces color artifacts that assign two chairs of the same type

different colors. The result of PTR is a little dark for the indoor scene. The result of SC looks a little pink and dark for the

entire image. The result of LW shows some color distortion. Our result reveals more detail than EF, especially in the door lock

region. (a) Input image sequence (left four) and final probability maps (right four). (b) Proposed. (c) EF [11]. (d) PTR [9]. (e)

SC [29]. (f) LW [30]. (Input sequence courtesy of Tom Mertens.)

Figures 5 and 6 give comparison of our IF algorithm with EF and three TM methods on two image

sequences. In all experiments, the intermediate HDR images for photographic tone reproduction (PTR) [9],

subband compression (SC) [29] and linear windowed (LW) [30] are generated from the corresponding
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Fig. 7. Results on different image sequences. Our algorithm works well for various scenes and combinations of exposure

settings. Left most: National Cathedral; left: Chateau; right: Lizard; right most: Room. (Input sequences courtesy of Max Lyons,

HDRsoft.com, Eric Reinhard, and Grzegorz Krawczyk, respectively.)

LDR sequences using HDRShop3, which employs the HDR-R algorithm in [5]. The results of PTR

are generated by an HDRShop plugin4. The results of SC and LW are generated by the Matlab imple-

mentations provided by their respective authors. There is no constant set of parameters in their original

papers, because TM methods usually depend on user-controlled parameters to generate desired tone-

mapped images. However, in order to give a relatively fair image quality comparison with our and other

IF methods where constant sets of parameters are used throughout the experiments, we use the default

parameter settings in their programs in all experiments.

Figure 5 shows the experimental results on the Belgium House sequence. The last row gives a closeup

view of the window regions. Although the result of SC preserves as much detail as ours, it looks a little

pink due to color distortion. The result of EF and PTR suffers over-exposure for all the window regions.

The result of LW shows some color artifacts, e.g., color reversal of the blackboard. Color artifacts in

the results of TM methods are usually caused by operations carried out solely in the luminance channel

without involving chrominance [26]. Our method treats each color channel equally and imposes color

consistency, which helps to avoid color artifacts. Note that adjusting the parameters in SC and LW

may reduce color distortion and generate more pleasing images, which is considered as a common user

interaction in TM methods. However, we use constant sets of parameters for both TM and IF methods

in our experiments in order to give a relatively fair comparison of these two types of methods.

Figure 6 shows the results on the House sequence. The last row gives a closeup view of the door lock

region. The result of PTR is a little dark for the indoor scene. The result of SC reveals many details of

the outdoor scene but looks a little pink and dark for the entire image. The result of LW also reveals

many details but shows some color distortion of the outdoor scene. Although both our method and EF use

3http://www.hdrshop.com/.
4http://www.gregdowning.com/HDRI/tonemap/Reinhard/.
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TABLE I

COMPUTATIONAL TIMES OF THE PROPOSED ALGORITHM AND EF ON THE TEST IMAGE SEQUENCES. TIMES ARE RECORDED

IN SECONDS

Input sequence Size Initialize
Compute

Optimize Fuse Total EF [11]
compatibilities

Window 226× 341× 5 0.06 0.03 0.02 0.05 0.17 0.68

Chairs 343× 231× 5 0.06 0.04 0.02 0.05 0.17 0.68

Garage 348× 222× 6 0.07 0.05 0.02 0.06 0.20 0.80

Igloo 236× 341× 6 0.07 0.05 0.03 0.05 0.20 0.85

House 752× 500× 4 0.24 0.13 0.14 0.21 0.72 2.64

Memorial Church 512× 768× 16 0.75 0.46 0.20 0.78 2.18 9.82

Chateau 1500× 644× 5 0.78 0.40 0.57 0.76 2.51 9.73

Belgium House 1025× 769× 9 0.94 0.51 0.37 0.92 2.74 11.68

Room 1024× 768× 13 1.32 0.80 0.53 1.34 3.99 16.40

National Cathedral 1536× 2048× 2 1.33 0.38 1.66 1.10 4.47 12.79

Lamp 1600× 1200× 15 3.33 1.94 1.26 3.61 10.13 Out of Memory

Lizard 2462× 1632× 9 4.56 2.73 2.48 4.89 14.66 Out of Memory

local variations to indicate local contrasts, we use a nonlinear function to modify the contrast indicators.

This nonlinear mapping reflects the nonlinear human perception of contrast [34]. In addition, the well-

exposedness measure in EF is biased towards pixels with a specific luminance. Therefore, our result

reveals more detail than EF, especially in the door lock region. The two chairs in the original sequence

have the same color, but for EF the color difference between them is quite obvious. Our method keeps

the colors consistent while EF fails, because our method imposes consistency in large neighborhoods

and consistency with the natural scene via the color consistency measure. Our algorithm works well for

various scenes and combinations of exposure settings. More results on different image sequences are

given Figure 7.

B. Computational Complexity

In the initialization step, the input image sequence is converted to gray scale for calculating yik’s, and

an average image is also computed for calculating wij’s. The complexity of this step is O(NK), where N

is the number of pixels in an input image and K is the number of images in the input sequence. Since the

number of operations is proportional to the total number of input pixels, the complexity for computing the
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compatibilities is also O(NK). We employ CHOLMOD5 [35], which is based on supernodal Cholesky

factorization, to solve the linear system in Equation (6). The complexity of this direct solver is proportional

to the number of the nonzero entries in LX , and in our case it is O(Nη2 ). Since there are altogether K linear

systems to be solved, the complexity of this step is O(NKη2 ). With only linear operations involved, the

complexities of the fusion step is O(NK). Therefore, the total complexity of our algorithm is O(NK).

Our algorithm is currently implemented in Matlab. The computational times for the 12 image sequences

are reported in Table I, along with the comparison with EF [11]. Both our and EF’s Matlab implementa-

tions were executed on the same computer with a 2.53GHz CPU and 2GB memory available for Matlab.

Times for reading the input sequences and writing the output images are excluded. The times of EF

on the National Cathedral and the Lizard sequences are not given, because its Matlab implementation

requires more than 2GB memory for the computation of those sequences. Our algorithm takes only 25%

of the total time of EF on the average.

C. Analysis of Free Parameters

The effectiveness of acceleration is illustrated in Figure 8(a). All the 12 image sequences in Table I

were used in this and following analyses. For illustration, we plot three representative image sequences at

different scales (i.e., Igloo, Memorial Church, and Belgium House) in the graph. We fix σw = 0.1, γ = 1.0

in this analysis. The horizontal axis represents the block width η and the vertical axis represents the

computational time in seconds. Time used in initialization is excluded because the acceleration does not

affect this step. Computational time decreases as η increases. However, significant efficiency improvement

is only observed when η 6 5.

Errors introduced by acceleration are shown against block width η in Figure 8(b). The error in a

pixel p∗i is calculated using Euclidean distance between a pixel in a resulting image with η > 1 and

the corresponding pixel in the reference image with η = 1, i.e., E(p∗i ) = ‖p∗i − prefi ‖. The pixel

values are normalized between [0, 1]. The total error in a resulting image is measured using RMSE, i.e.,

E(I∗) =
√

1
N

∑
iE(p∗i )

2. The error increases as the block size η increases. However, significant error

increase only occurs when η 6 5. Even when η = 10, the total error is still below 9%. Some results on

the Belgium House image sequence with different η’s and their corresponding color-coded error maps

are shown in Figure 9. In an error map, warmer colors indicate larger errors. The error increases as η

5CHOLMOD has been included in Matlab since version 7.2.
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Fig. 8. Analysis of acceleration with different block width η. Error is defined as the relative difference from the results generated

with η = 1. Significant efficiency improvement is only observed when η 6 5 and significant error increase only occurs when

η 6 5. (a) Effectiveness of acceleration. (b) Error introduced.

(a) (b) (c) (d) (e) (f)

Fig. 9. Errors introduced by acceleration on the Belgium House image sequence. The result generated with η = 1 is used

as the reference image. The error increases when η increases, as shown in the color-coded error maps (warmer colors indicate

larger errors). However, the total error is still below 9% even when η = 10. (a) η = 1. (b) η = 2. (c) η = 4. (d) η = 5. (e)

η = 6. (f) η = 10.

increases. In order to balance the speed and error, we tested different values and found that using a block

width η ∈ [2, 5] generates reasonably good results.

In the analysis of σw, we fix γ = 1.0, η = 4. The error is defined similarly as in the analysis of
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Fig. 10. Sensitivity analysis of the free parameter σw. The error increases dramatically as σw becomes too small. It increases

slowly when σw > 0.4 and converges after σw = 1.0.

(a) (b) (c) (d) (e)

Fig. 11. Sensitivity analysis of the free parameter σw on the Igloo image sequence. The result generated with σw = 0.1 is

used as the reference image. When σw decreases, the image gets brighter, and therefore more information is revealed in the

under-exposed regions. However, if σw becomes too small, adjacent pixels with large difference may be ignored, which leads

to artifacts at object boundaries. (a) σw = 0.1. (b) σw = 0.01. (c) σw = 0.05. (d) σw = 0.5. (e) σw = 2.0. (Input sequence

courtesy of Shree Nayar.)

η and the results with σw = 0.1 are used as reference images. The analysis on three representative

image sequences is plotted in Figure 10. Some results on the Igloo sequence with different σw’s and

their corresponding color-coded error maps are shown in Figure 11. The error increases dramatically

as σw becomes too small. It increases slowly when σw > 0.4 and converges after σw = 1.0. When

σw decreases, the image gets brighter, and therefore more information is revealed in the under-exposed

regions. However, if σw becomes too small, adjacent pixels with large difference may be ignored, which

leads to artifacts at object boundaries. Therefore, we suggest using σw ∈ [0.05, 0.4].

In the analysis of γ, we fix σw = 0.1, η = 4. The error is defined similarly as in the analysis of η

and the results with γ = 1.0 are used as reference images. The analysis on three representative image

sequences is plotted in Figure 12. Some results on the Memorial Church sequence with different γ’s and
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Fig. 12. Sensitivity analysis of the free parameter γ. The error increases dramatically as γ becomes too small, but increases

slowly when γ > 5.0.

(a) (b) (c) (d) (e)

Fig. 13. Sensitivity analysis of the free parameter γ on the Memorial Church image sequence. The result generated with

γ = 1.0 is used as the reference image. When γ decreases, more detail is revealed in the over-exposed regions. However, if γ

is too small, artifacts may occur at object boundaries. (a) γ = 1.0. (b) γ = 0.01. (c) γ = 0.2. (d) γ = 5.0. (e) γ = 10.0. (Input

sequence courtesy of Paul Debevec.)

their corresponding color-coded error maps are shown in Figure 13. The error increases dramatically as

γ becomes too small, but increases slowly when γ > 5.0. When γ decreases, more detail is revealed in

the over-exposed regions. However, if γ is too small, like in the analysis of σw, artifacts may occur at

object boundaries. Therefore, we suggest using γ ∈ [0.2, 5].

D. Post-Processing for Further Enhancement

Although our algorithm preserves more detail than EF, the results of EF for some image sequences

may have higher contrast (sharper) in certain regions. An example is given in Figure 14(a)(b). The tag

near the bulb is clearly visible in our result but washed out in the result of EF. The region near the red

book looks more colorful in the result of EF. Higher contrast can also be obtained from our method by

applying histogram equalization as a post-processing step. In order to provide a fair comparison, we added
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(a) (b) (c) (d)

Fig. 14. Comparison of our algorithm with EF [11] using the Lamp image sequence. The results of EF are generated on a

smaller scale (1/4) of the input sequence. Although the result of EF looks more colorful in some regions than our result, it

preserves less detail. Especially for the lamp, the bulb and the tag beside it are clearly visible in our result but washed out in

the result of EF. Although histogram equalization causes our result to lose some information in the lamp region, our result still

preserves more detail than the result of EF, e.g., in the paper region. (a) Proposed before histogram equalization. (b) EF before

histogram equalization. (c) Proposed after histogram equalization. (d) EF after histogram equalization. (Input sequence courtesy

of Martin Cadı́k.)

histogram equalization to both methods. The images in Figure 14(c)(d) illustrate that the contrast in our

result is improved while EF suffers a loss of detail during the process. Although histogram equalization

causes our result to lose some information in the lamp region, our result still preserves more detail than

the result of EF, e.g., in the paper region.

E. Effect of Noise

One limitation of our algorithm is that it is sensitive to noise in the input image sequence. One

example is given in Figure 15. White Gaussian noise with 0 mean and variance from 0.001 to 0.01 with

increments of 0.001 is added to one of the four input images (pixel values are scaled to the range [0, 1]).

For brevity, only the corrupted image with variance 0.01 is shown in Figure 15, along with the original

image. In our algorithm, the initial probabilities are determined by local contrast, and this local measure

is sensitive to white Gaussian noise because it is calculated by local variance. Since a global optimization

scheme is used afterwards, the error caused by the noise tends to propagate to a larger neighborhood.

The color-coded probability maps are given in Figure 15(a)(b), where warmer colors represent higher

probabilities. Compared to the probability map generated for the original image, higher probabilities are

assigned to pixels in the corrupted image, especially in the textureless regions like the walls. Even if we

use the correctly computed probability maps, pixels from the noisy images still contribute to the fused
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(a) (b)

(c) (d) (e)

Fig. 15. Analysis of our algorithm’s sensitivity to Gaussian white noise and comparison with other algorithms using the House

image sequence. A closeup view of regions near the window is placed beside each image to give a clearer view of the effect

of noise. As the Gaussian noise variance increases, errors introduced by the noise become more obvious. Our algorithm, EF,

and PTR are all affected by the noise in the input image. (a) Original image (left) and its corresponding color-coded probability

map (right) calculated by the proposed method (warmer colors represent higher probabilities). (b) Gaussian noise-corrupted

image with 0 mean and 0.01 variance (left) and its corresponding color-coded probability map (right) calculated by the proposed

method. (c) Fused image generated by the proposed method. (d) Fused image generated by EF [11]. (e) Tone-mapped image

generated by PTR [9].

image through the use of Equation (1). Therefore, the noisy images have significant influence on the

fused images, as shown in Figure 15(c). A closeup view of regions near the window is placed beside

each image to give a clearer view of the effect of noise. As the Gaussian noise variance increases, errors

introduced by the noise become more obvious. However, the results by EF are also affected by the noise

as shown in Figure 15(d). In addition, the noise in an input image also affects the HDR reconstruction

process, which results in a noisy HDR image. The tone mapping process fails to correct the noise in this

HDR image and the noise remains in the tone-mapped image. PTR [9], SC [29], and LW [30] generate

similarly affected results. Therefore, only the result of PTR is given in Figure 15(e).

One solution to this problem is to add a pre-processing step to reduce the noise in the input images.

One example is given in Figure 16. The input sequence is the House image sequence, where one image is

corrupted with white Gaussian noise with 0 mean and 0.01 variance as shown in Figure 15(b). Figure 16(a)

gives the denoised image using the method proposed by Portilla et al. [36]. The noisy image is first

decomposed into subbands using the steerable pyramid transform [37], and then Bayesian least square

estimation and Gaussian scale mixture model are employed to denoise each subband. The probability

map calculated for this denoised image and the fused image are given in Figure 16(b) and Figure 16(c),

respectively. They are close to the ones computed from the clean input images (see Figure 15(a) and
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(a) (b) (c)

Fig. 16. Fusion result using our algorithm after adding a denoising step. The probability map calculated for this denoised

image and the fused image are close to the ones computed from the clean input images. However, the object boundaries are a

little blurred during the denoising process, which also affects the fusion result. (a) Denoised image. (b) Color-coded probability

map. (c) Fused image.

Figure 6(b)). However, the object boundaries are a little blurred during the denoising process, which also

affects the fusion result. In the future, we will explore the possibility of incorporating a noise term into

our fusion model to make our algorithm more robust to noise.

F. Analysis of Different Forms of Compatibility Function for Contrast Measure

(a) (b) (c)

Fig. 17. Comparison between the results obtained from our current compatibility function (Equation (10)) and from Wilson’s

transducer function with Weber contrast (Equations (12) and (13)) using the Memorial Church image sequence. With all other

parameter settings the same, Wilson’s transducer function with Weber contrast preserves more detail in the window regions,

but produces contrast reversals at some places near the windows. When γ is increased to 100 to give more emphasis on color

consistency, the contrast reversals disappear although with some loss of detail. However, the brightness of the entire fused image

also decreases. (a) Equation (10) with σw = 0.1, γ = 1.0, and η = 4. (b) Equations (12) and (13) with σw = 0.1, γ = 1.0,

and η = 4. (c) Equations (12) and (13) with σw = 0.1, γ = 100, and η = 4.

The compatibility function used for contrast measure can take different forms. One alternative is to use

the contrast transducer function proposed by Wilson [34], which is a sigmoid-shaped function amplifying
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difference at low contrasts and suppressing difference at high contrasts. Wilson’s transducer function

takes the following form for contrasts below or near the contrast threshold where |c|S = 1:

µ(c) =
1

k
(1 + (|c|S)Q)1/3 − 1

k
, (12)

where c represents local contrast; k = 0.2599 is a parameter obtained by setting the contrast detection

threshold to 0.75; Q = 3.0 is an empirically determined parameter; S is called the contrast sensitivity

and in our experiment we set S = 1
0.75Cmax

, where Cmax represents the maximum magnitude of the

local contrast detected from the input sequence. Because of this setting of S, all contrasts are below or

near the threshold. Therefore, Equation (12) is used in our experiment instead of the unified transducer

function in [34] that combines Equation (12) and a function for high suprathreshold contrasts. In our

experiment, the local contrast cki at the ith pixel in image Ik is calculated based on Weber contrast:

cki =
4Lki
Lb

, (13)

where we take 4Lki as the luminance difference between the pixel pki and the average pixel of its 3× 3

neighborhood and Lb as the average luminance of the input sequence. Lb can also be taken as the local

average luminance, but this may make cki biased towards under-exposed pixels.

Figure 17 gives a comparison between the results obtained by our current compatibility function (Equa-

tion (10)) and by Wilson’s transducer function coupled with Weber contrast (Equations (12) and (13))

using the Memorial Church image sequence. With all other parameter settings the same, i.e., σw = 0.1,

γ = 1.0, and η = 4, Wilson’s transducer function with Weber contrast preserves more detail in the window

regions, but produces contrast reversals at some places near the windows. These contrast reversals are

caused by combining pixels from input images with large exposure gaps. When γ is increased to give

more emphasis on color consistency, the contrast reversals disappear although there is some loss of detail,

as shown in Figure 17(c). However, the brightness of the entire fused image also decreases. The current

form of the compatibility function (Equation (10)) gives a better balance between local contrast and

color consistency. We will analyse compatibility functions of other forms (e.g., [38]) and other quality

measures (e.g., [39]) that may enhance our algorithm’s performance in the future.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new fusion algorithm for multi-exposure images considering fusion as

a probabilistic composition process. A generalized random walks framework was proposed to compute

the probabilities. Two quality measures were considered: local contrast and color consistency. Unlike
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previous fusion methods, our algorithm achieves an optimal balance between the two measures via a

global optimization. Experimental results demonstrated that our probabilistic fusion produces good results,

in which contrast is enhanced and details are preserved with high computational efficiency. Compared

to other fusion methods and tone mapping methods, our algorithm produces images with comparable or

even better qualities. In future work, we will explore more effective quality measures and the possibility

of incorporating multi-resolution technique in the fusion process to further enhance our technique for

different fusion problems. We will also explore the possibility of applying the generalized random walks

framework to other image processing problems.
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